1 Fig. 8 shows a sketch of part of the curve $y = x \sin 2x$, where x is in radians.

The curve crosses the x-axis at the point P. The tangent to the curve at P crosses the y-axis at Q.

Fig. 8

- (i) Find $\frac{dy}{dx}$. Hence show that the *x*-coordinates of the turning points of the curve satisfy the equation $\tan 2x + 2x = 0$. [4]
- (ii) Find, in terms of π , the *x*-coordinate of the point P. Show that the tangent PQ has equation $2\pi x + 2y = \pi^2$. Find the exact coordinates of Q.
- (iii) Show that the exact value of the area shaded in Fig. 8 is $\frac{1}{8}\pi(\pi^2 2)$. [7]

[7]

2 (i) Use the substitution u = 1 + x to show that

$$\int_0^1 \frac{x^3}{1+x} \, \mathrm{d}x = \int_a^b \left(u^2 - 3u + 3 - \frac{1}{u} \right) \, \mathrm{d}u,$$

where a and b are to be found.

Hence evaluate
$$\int_{0}^{1} \frac{x^3}{1+x} dx$$
, giving your answer in exact form.

Fig. 8 shows the curve $y = x^2 \ln(1 + x)$.

(ii) Find
$$\frac{dy}{dx}$$
.

Verify that the origin is a stationary point of the curve.

[5]

[7]

(iii) Using integration by parts, and the result of part (i), find the exact area enclosed by the curve $y = x^2 \ln(1+x)$, the *x*-axis and the line x = 1. [6]

3 (i) Differentiate $\frac{\ln x}{x^2}$, simplifying your answer. [4]

(ii) Using integration by parts, show that
$$\int \frac{\ln x}{x^2} dx = -\frac{1}{x}(1+\ln x) + c.$$
 [4]

4 Evaluate the following integrals, giving your answers in exact form.

(i)
$$\int_{0}^{1} \frac{2x}{x^{2}+1} dx.$$
 [3]
(ii) $\int_{0}^{1} \frac{2x}{x+1} dx.$ [5]