1 Fig. 8 shows a sketch of part of the curve $y=x \sin 2 x$, where x is in radians.

The curve crosses the x-axis at the point P . The tangent to the curve at P crosses the y-axis at Q .

Fig. 8
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Hence show that the x-coordinates of the turning points of the curve satisfy the equation $\tan 2 x+2 x=0$.
(ii) Find, in terms of π, the x-coordinate of the point P .

Show that the tangent PQ has equation $2 \pi x+2 y=\pi^{2}$.
Find the exact coordinates of Q .
(iii) Show that the exact value of the area shaded in Fig. 8 is $\frac{1}{8} \pi\left(\pi^{2}-2\right)$.

2 (i) Use the substitution $u=1+x$ to show that

$$
\int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x=\int_{a}^{b}\left(u^{2}-3 u+3-\frac{1}{u}\right) \mathrm{d} u
$$

where a and b are to be found.
Hence evaluate $\int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x$, giving your answer in exact form.
Fig. 8 shows the curve $y=x^{2} \ln (1+x)$.

Fig. 8
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Verify that the origin is a stationary point of the curve.
(iii) Using integration by parts, and the result of part (i), find the exact area enclosed by the curve $y=x^{2} \ln (1+x)$, the x-axis and the line $x=1$.

3 (i) Differentiate $\frac{\ln x}{x^{2}}$, simplifying your answer.
(ii) Using integration by parts, show that $\int \frac{\ln x}{x^{2}} \mathrm{~d} x=-\frac{1}{x}(1+\ln x)+c$.

4 Evaluate the following integrals, giving your answers in exact form.
(i) $\int_{0}^{1} \frac{2 x}{x^{2}+1} \mathrm{~d} x$.
(ii) $\int_{0}^{1} \frac{2 x}{x+1} \mathrm{~d} x$.

